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Abstract. This paper addresses in a concise and rigorous way the basic tools for the study of local longi-
tudinal and transverse microscopic currents in two-dimensional devices. The emphasis is on the optimized
use of the Keldysh nonequilibrium Green’s function theory together with the tight-binding representation
of the electronic system. We elaborate general analytic expressions of current profiles, useful for modeling
and simulating the local site-to-site flow of carriers; furthermore, in broken time-reversal symmetry, the
formalism discerns unambiguously persistent and transport contributions to the bond currents. Our ap-
proach achieves a workable theoretical imaging, resolved in space and energy, of the microscopic currents
through mesoscopic devices.

PACS. 72.10.Bg General formulation of transport theory – 73.63.-b Electronic transport in nanoscale
materials and structures

1 Introduction

Space and energy resolved imaging of currents is fun-
damental for understanding electron transport in meso-
scopic conductors. In fact, advances in experimental tech-
niques based on scanning probe microscopy aimed to
image coherent electron flow [1–5], but more generally the
wide field of conductance (I/V ) spectroscopy on nanode-
vices [6–8], has evidenced the importance of theoretical
tools able not only to describe I − V characteristics, but
also to predict currents distributions for specific shapes of
the device and external bias conditions.

A wide and well assessed literature exists on the calcu-
lation of ballistic transport in quantum devices and mul-
tilayer structures. Most of the methods adopted address
the evaluation of the total current in the device, in the lin-
ear response regime and (almost) equilibrium conditions,
expressing the conductance in terms of transmission prob-
abilities in the scattering Landauer-Büttiker approach [9].
The presence of magnetic fields has further contributed to
enrich the interest in analytic expressions for the evalua-
tion of the conductance [10]. Among the different theoret-
ical techniques developed for the evaluation of the micro-
scopic currents, we mention transfer matrix methods [11],
direct matching of the propagation modes in the leads
with the wavefunctions of the scattering region [12,13],
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the density matrix approach [14] and the Green’s func-
tion approach [15,16].

In particular, the nonequilibrium Green’s function
(NEGF) formalism, introduced by Kadanoff and
Baym [17] and Keldysh [18] has emerged as a very suc-
cessful tool [15,16,19,20] for its ability to handle systems
regardless how near or how far from equilibrium they are
driven. Moreover, when coupled with the Poisson equa-
tion, it is well suited for the self consistent determination
of the potential profile in the device [21]. For ballistic
transport in noninteracting electron systems, the NEGF
formalism reproduces the Landauer theory of transport.
In addition, a noticeable bonus of the formalism is that
self-consistent nonequilibrium Dyson equations of the
theory are given in terms of self-energies calculated by
standard many-body diagrammatic techniques [22,23].
Thus, at least in principle, electron-electron [24–27]
coupling, electron-phonon [28–32] interactions, alloy
scattering [33], time-dependent interactions [34] can be
included in the formalism at the desired (or reasonable)
order of accuracy.

Even if the largest number of papers has focused on the
evaluation of the total current through the lead-device-
lead system, attempts have also been made to deduce
expressions for the local spatial distribution of currents.
This has generally been performed in the framework of the
Landauer-Büttiker formalism by appropriate discretiza-
tion of electronic wavefunctions [35] or by suitable pro-
jection operators into the atomic sites of the device, in
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the tight-binding formalism [36]. Also the Wigner function
approach to the NEGF formalism has been elaborated to
investigate theoretically and numerically the electron den-
sity and current density in two-dimensional systems in the
linear response regime [37].

The aim of this paper is to provide closed analytic ex-
pressions for the spatial distribution and energy resolution
of the currents flowing through realistic devices, under fi-
nite external bias and also in the presence of magnetic
fields. Our results are obtained by means of the Keldysh
nonequilibrium Green’s function appropriately inserted in
the tight-binding formalism for the description of the de-
vice and the leads, and exploit recursive techniques [8,38]
for the reduction of the huge number of degrees of free-
dom encountered in the description of open mesoscopic
devices. A one-body picture of the electronic Hamiltonian
is employed throughout this paper.

We start mapping the total system into a suitable
discretized square lattice quantum wire, that mimics the
actual mesoscopic sample under investigation. We then
describe the site-to-site current in terms of the lesser
Green’s function obtained from the kinetic equations of
the Keldysh theory. By means of appropriate manipula-
tions of the generalized Dyson equations, the microscopic
currents are finally expressed in terms of the retarded and
advanced Green’s functions, the retarded and advanced
self-energies, and the Fermi distribution functions at fi-
nite temperatures of the leads.

In our procedure the real-space renormalization-recur-
sive method [38–44] is found particularly convenient in
the solution of the quantum kinetic equations both in the
absence and in the presence of magnetic fields. In partic-
ular, in the presence of magnetic fields and broken time-
reversal symmetry, we provide here exact analytic expres-
sions for the transport and persistent contributions to the
site-to-site currents, both longitudinal and transverse to
the device. The determination of these contributions is
unambiguous and their physical meaning is highlighted.
We have also shown analytically that the longitudinal and
transverse currents, flowing through a chosen column of
the device, can be obtained from the knowledge of Green’s
function elements involving only the sites of the selected
column; this makes the final expressions much appealing
for numerical implementations and greatly limits the com-
putational effort. In general it is thus possible at any cho-
sen energy to describe the spatial distribution of the cur-
rents and their nature.

In previous work [39] we have shown the potentialities
of the tight-binding Keldysh approach for the theoreti-
cal investigation of the current distributions in a random
quantum wire in the transport regime of universal conduc-
tance fluctuations, in the study of the effect of a scanning
tip on a two-dimensional electron gas, and in the analy-
sis of scattering of edge currents through quantum point
contacts [40]. In this paper we present a more complete
deduction of the expressions used therein, and introduce
analytic elaborations to give them the most economical
form for the systematic modeling and simulation of de-
vices.

In Section 2 the two-dimensional system under study
and some basic definitions are introduced. The expressions
for the longitudinal and transverse currents are deduced
in Section 3; their simplification in the presence of time-
reversal symmetry is reported in Section 4. In Section 5
we focus on the mathematical expressions elaborated for
transport and persistent currents in broken time-reversal
symmetry. Physical aspects behind the formalism are here
illustrated by numerical simulations of the currents in
quantum wires. In Section 6, the expression of current
imaging at finite temperatures is reported. Section 7 con-
tains the conclusions.

2 General considerations on the electronic
current in two-dimensional devices

We start considering a two-dimensional device, whose elec-
tronic structure is described within the one-electron ap-
proximation in the tight-binding framework. For simplic-
ity we confine our investigation to the case of a single or-
bital per site and nearest-neighbor interactions; whenever
necessary the inclusion of multiorbitals per site, successive
neighbor interactions, spin-orbit or spin-dependent terms,
etc., can be dealt with similar procedures. A further ad-
vantage of the tight-binding description is its simplicity
and accuracy to account for the effects of perpendicular
magnetic fields [8] by means of appropriate Peierls phase
factors in the site-to-site hopping parameters. The system
under attention is schematically indicated in Figure 1.

It is convenient to partition the complete structure into
two semi-infinite leads and a central device. In our case
the device includes M ×N sites, with coordinates ma, na
and m = 1, 2, . . . , M and n = 1, 2, . . . , N . The one-body
electron Hamiltonian of the whole structure is initially
separated into the unperturbed part, corresponding to the
three regions of the device isolated one from the others,
and the perturbation that couples them. We write

H = H0 + Wpert (1a)

where
H0 = H

(left)
0 + H

(center)
0 + H

(right)
0 (1b)

is the Hamiltonian of the three parts of the device not
yet in interaction, and Wpert represents the perturbation.
The various terms of the Hamiltonian can be written as
follows (n runs over the N chains composing the system,
m and m′ run over the leads and device columns)

H
(left)
0 =

∑

mn

Emnc†mncmn +
∑

mn�=m′n′
tmn,m′n′c†mncm′n′

(m, m′ = 0,−1,−2, . . .)

H
(center)
0 =

∑

mn

Emnc†mncmn +
∑

mn�=m′n′
tmn,m′n′c†mncm′n′

(m, m′ = 1, 2, . . . , M)

H
(right)
0 =

∑

mn

Emnc†mncmn +
∑

mn�=m′n′
tmn,m′n′c†mncm′n′

(m, m′ = M +1, M +2, . . .)
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Fig. 1. Typical arrangement of a two-dimensional device for
the analysis of current distribution.

where c†mn and cmn denote creation and annihilation op-
erators corresponding to the electronic orbital φmn. The
perturbation is given by

Wpert = W
(left)
pert + W

(right)
pert (2a)

where

W
(left)
pert =

∑

n

t0n,1nc†0nc1n +
∑

n

t1n,0nc†1nc0n (2b)

W
(right)
pert =

∑

n

tMn,M+1 nc†MncM+1 n

+
∑

n

tM+1 n,Mnc†M+1 ncMn. (2c)

The “central device” is here embraced between Col. 1
and Col. M , as shown in Figure 1. The two semi-infinite
regions on either side of the central device are in con-
tact with particle reservoirs. The Fermi-Dirac distribu-
tion functions of the left and right reservoirs are denoted
by fL(E) and fR(E) and the corresponding chemical po-
tentials by µL and µR, respectively. The Green’s func-
tions of the structure with disconnected leads are denoted
by gR, gA, g<, g> (the superscripts stand for retarded, ad-
vanced, lesser and greater). With GR, GA, G<, G> we de-
note the Green’s functions of the complete system in the
nonequilibrium steady state.

For the Green’s function of the central device the fol-
lowing general relation holds [7,28]

GR − GA = −iGR[Γ (left) + Γ (right)]GA (3)

where the matrix Γ (left) represents the coupling of Col. 1
to the part of the device on its left side, and the matrix
Γ (right) represents the coupling of the Mth column to the
part of the device on its right side; these two matrices are
given by

Γ
(left)
1n,1n′ = i Σ

R(left)
1n,1n′ − i Σ

A(left)
1n,1n′

and
Γ

(right)
Mn,Mn′ = i Σ

R(right)
Mn,Mn′ − i Σ

A(right)
Mn,Mn′ ,

where the self-energy operators on the border columns

Σ
R,A(left)
1n,1n′ = t1n,0ngR,A

0n,0n′t0n′,1n′

Σ
R,A(right)
Mn,Mn′ = tMn,M+1 ngR,A

M+1 n,M+1 n′tM+1 n′,Mn′

describe the effects of the open leads on the retarded and
advanced electron propagators in the central region of in-
terest.

Before passing to proper elaborations of the above ex-
pressions, we specify some notations of frequent use in the
following of this work. In general the matrix elements of a
Green’s function operator (say the retarded operator GR)
carry four lower labels GR

mn,m′n′(E): this is required to
specify the propagator from the site m′n′ to the site mn.
The abridged notation GR

mm′(E) is used to denote the
propagator from a site (not yet specified) of column m′
to a site (not yet specified) of column m. Thus GR

mm′(E)
denotes a matrix of rank N , whose elements are

[
GR

mm′
]
nn′ = GR

mn,m′n′ = 〈φmn|GR|φm′n′〉.

Equation (3) specified to the sites of Col. 1, takes the form

GR
11 − GA

11 = −iGR
11Γ

(left)
11 GA

11 − iGR
1MΓ

(right)
MM GA

M1, (4a)

an identity exploited in the following.
Another important identity can be obtained by choos-

ing as central region of the same system considered
above the part which extends from column 1 to column
M ′ (M ′ ≥ 1; M ′ �= M). In this case, replacing M with M ′
in equation (4a) we obtain the new relation

GR
11 −GA

11 = −iGR
11Γ

(left)
11 GA

11 − iGR
1M ′Γ

(right)
M ′M ′ GA

M ′1. (4b)

From equations (4a) and (4b) it follows

GR
1M ′Γ

(right)
M ′M ′ GA

M ′1 = GR
1MΓ

(right)
MM GA

M1 (M, M ′ ≥ 1)

which allows us to choose as “central device” the most
convenient part of the complete system for calculations.
In particular, setting M ′ = 1, we have the equality

GR
11Γ

(right)
11 GA

11 = GR
1MΓ

(right)
MM GA

M1 for any M ≥ 1.
(4c)

In the calculations of the currents a key ingredient is the
quantity GR

1MΓ
(right)
MM GA

M1; by virtue of equation (4c), we
can replace it by GR

11Γ
(right)
11 GA

11. Thus for the calculation
of currents in the two-terminal geometry under attention
it is not needed the knowledge of the “inter-column” ma-
trices of the type GR,A

I,M (I �= M), but it is sufficient to con-
sider the “intra-column” Green’s functions GR,A

I,I , with ev-
ident advantages in the numerical simulations. The iden-
tities summarized by equations (4) are by-products of the
basic relationship (3), which in turn is embodied in the
Keldysh kinetic equation for the lesser Green’s function,
discussed in the next section. In essence, these identities
are the exact analytic expressions of the current conserva-
tion through any section of the system in steady nonequi-
librium conditions.

After these introductory remarks, we pass now to the
determination of the microscopic currents through the
mesoscopic system.
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3 Branch currents in a two-dimensional
device

In Figure 1 the whole device has been (arbitrarily) split
into three parts conventionally referred to as: “left lead”
(Col. 0 and whatever is at its left), “central part” (what-
ever is at and within Col. 1 and Col. M ≥ 1), “right lead”
(Col. M + 1 and whatever is at its right). In this section
we elaborate the expressions for the energy-resolved and
spatially-resolved microscopic currents that flow between
the sites of Col. 0 and the adjacent sites of Col. 1 (longi-
tudinal currents) and across the strand of sites of Col. 1
(transverse currents). The current profiles of the meso-
scopic systems are then provided by scanning the “concep-
tual cut” throughout the region of interest of the devices
under investigation.

3.1 Expression of the longitudinal currents

The longitudinal current flowing along the bond from site
0n to site 1n in steady state conditions is given by the
expression [16]

I0n,1n =
2(−e)

�

∫
dE

2π
2� [

t0n,1nG<
1n,0n

]

= −i0

∫
dE 2� [

t0n,1nG<
1n,0n

]
, (5)

where i0 ≡ 2e/h = 7.748092 × 10−5 A/eV is the natural
unit of spectral current; the factor 2 in i0 takes account
of spin degeneracy. (A convenient unit to express current
is I0 = i0 × 1 meV = 77.48092 nA.)

In equation (5) the matrix elements of the nonequilib-
rium Green’s function G< involve an orbital in the left
lead and an orbital in the central device. The first step
in the elaboration of equation (5) is to deal with Green’s
function matrix elements GR,A,<, which involve only or-
bitals on the central device region. To achieve this purpose
one can use the general expression [8,18]

G< = g< + GR Wpert g< + G< Wpert gA (6)

where Green’s functions expressed by lower cases refer to
the system, initially split into three uncoupled parts at
time t = −∞. From equations (6) and (2), we have the
matrix elements

G<
1n,0n =

∑

n′
GR

1n,1n′ t1n′,0n′ g<
0n′,0n

+
∑

n′
G<

1n,1n′ t1n′,0n′ gA
0n′,0n.

The quantity in square brackets in the integrand in
equation (5) becomes

t0n,1nG<
1n,0n =

∑

n′

[
GR

1n,1n′ t1n′,0n′ g<
0n′,0nt0n,1n

+ G<
1n,1n′ t1n′,0n′ gA

0n′,0nt0n,1n

]

=
∑

n′
GR

1n,1n′Σ
<(left)
1n′,1n +

∑

n′
G<

1n,1n′Σ
A(left)
1n′,1n

=
[
GR

11 Σ
<(left)
11 + G<

11 Σ
A(left)
11

]

nn

where the lesser and advanced self-energy matrices
are

Σ
<(left)
1n′,1n = t1n′,0n′g<

0n′,0nt0n,1n

Σ
A(left)
1n′,1n = t1n′,0n′gA

0n′,0nt0n,1n.

The expression (5) for the current is then

I0n,1n = −i0

∫
dE 2�

[
GR

11Σ
<(left)
11 + G<

11Σ
A(left)
11

]

nn
.

(7)
To proceed further we need the expression of the lesser
Green’s function projected on the central device. This ki-
netic equation, which takes into account the injection or
extraction of carriers from the leads to the central device,
reads

G< = GRΣ<(leads)GA

= ifLGRΓ (left)GA + ifRGRΓ (right)GA, (8)

where all the matrices representing the operators are re-
stricted to the basis orbitals belonging to the central de-
vice. In particular, using equation (8), we have for the
lesser Green’s function on the Col. 1 the following expres-
sion

G<
11 = ifLGR

11Γ
(left)
11 GA

11 + ifRGR
1MΓ

(right)
MM GA

M1. (9)

Notice that equation (8) is valid regardless how near or
how far the device is driven out of equilibrium. Sup-
pose now, as a particular case, that the two leads (in
the past remote) were kept in contact with two reser-
voirs having the same Fermi-Dirac distribution function
f0, so that fL = fR ≡ f0. In this case, the central de-
vice is driven to the thermal equilibrium, with the lesser
Green’s function G< = −f0(GR − GA). Inserting this ex-
pression into the first member of equation (8), and setting
fL = fR = f0 into the second member of equation (8),
leads to equation (3). Thus relation (3) is a necessary in-
gredient to give sense to the kinetic equation (Eq. (8)).

Inserting into equation (7) the expression for the lesser
Green’s function, and the expression for the lesser self-
energy of the left lead, one obtains

I0n,1n = i0

∫
dE 2�

[
fLGR

11Σ
R(left)
11 − fLGR

11Σ
A(left)
11

−ifLG
R
11Γ

(left)
11 GA

11Σ
A(left)
11 −ifRGR

1MΓ
(right)
MM GA

M1Σ
A(left)
11

]

nn
.

(10a)
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The above expression can also be written in the equivalent
form

I0n,1n =
∫

i0n,1n(E) dE (10b)

where the spectral current (or the current per unit en-
ergy) i0n,1n(E), is the integrand of the expression (10a)
including the natural unit of spectral current i0.

Equations (10a) and (10b) elaborated so far for the
local current are exact and hold at any arbitrary tem-
perature. For sake of simplicity, and without loss of gen-
erality, we now consider the expressions for current pro-
files at zero temperature. In fact, as outlined in Section 6,
the treatment of current profiles at finite temperatures is
trivial, and just follows step-by-step the treatment at zero
temperature we are going to work out in this Section. At
the absolute zero temperature, the two Fermi distribution
functions become step functions fL(E) = Θ(µL − E) and
fR(E) = Θ(µR − E); the spectral current, i.e. the inte-
grand of equation (10a), then becomes

i0n,1n(E) = i0 Θ(µL − E) 2�
[
GR

11Σ
R(left)
11 − GR

11Σ
A(left)
11

−iGR
11Γ

(left)
11 GA

11Σ
A(left)
11

]

nn

+ i0 Θ(µR − E) 2�
[
−iGR

1MΓ
(left)
MM GA

M1Σ
A(left)
11

]

nn
. (11)

It is convenient to write down separately equation (11) in
the case µL < µR [hereafter referred to as case (a)] and
in the case µR < µL [hereafter referred to as case (b)].
The physical reason for this distinction is that carriers
are injected from the right lead to the left lead in the
former case, while in the latter case the opposite occurs;
we can here anticipate that, in the presence of magnetic
fields, the spatial distribution of currents (and hence their
mathematical expressions) can be totally different in case
(a) and case (b) because of the Lorentz force acting on the
moving carriers.

Consider case (a) corresponding to µL < µR; then i(E)
defined in equation (11) assumes the following expression

i
(a)
0n,1n(E) = i0 2�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
GR

11Σ
R(left)
11 − GR

11Σ
A(left)
11

−iGR
11Γ

(left)
11 GA

11Σ
A(left)
11

−iGR
1MΓ

(right)
MM GA

M1Σ
A(left)
11

]

nn

E < µL < µR

[
−iGR

1MΓ
(right)
MM GA

M1Σ
A(left)
11

]

nn

µL < E < µR

0 µL < µR < E.
(12)

The branch current I0n,1n of equation (10b) is obtained
performing the integration of the spectral current on the
energy variable. The integration extends from E = −∞

to E = µR and is performed separately in the energy
regions E < µL and µL < E < µR adopting the cor-
responding appropriate expression for the spectral cur-
rent reported in equation (12). The integral in the energy
interval [−∞, µL] is obviously restricted to the interval
[Emin, µL], where Emin is the lowest eigenvalue of the elec-
tron system Hamiltonian.

Consider now case (b) corresponding to µR < µL; the
spectral current i(E) of equation (11) assumes the follow-
ing expression

i
(b)
0n,1n(E) = i0 2�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
GR

11Σ
R(left)
11 − GR

11Σ
A(left)
11

−iGR
11Γ

(left)
11 GA

11Σ
A(left)
11

−iGR
1MΓ

(right)
MM GA

M1Σ
A(left)
11

]

nn

E < µR < µL

[
GR

11Σ
R(left)
11 − GR

11Σ
A(left)
11

−iGR
11Γ

(left)
11 GA

11Σ
A(left)
11

]

nn

µR < E < µL

0 µR < µL < E.
(13)

It can be noticed that the bottom (and top) expressions
of equations (12) and (13) are coincident, while the in-
termediate expressions are different; the reason for this
difference, and the role of magnetic fields in making them
different, will be discussed in the next section.

We can simplify somewhat the formulas using the iden-
tities given in equations (3) and (4). We have

GR
11Σ

R(left)
11 − GR

11Σ
A(left)
11 − iGR

11Γ
(left)
11 GA

11Σ
A(left)
11

−iGR
1MΓ

(right)
MM GA

M1Σ
A(left)
11 =

GR
11Σ

R(left)
11 − GR

11Σ
A(left)
11 + (GR

11 − GA
11)Σ

A(left)
11

= GR
11Σ

R(left)
11 − GA

11Σ
A(left)
11 .

From the above expression we have

GR
11Σ

R(left)
11 − GR

11Σ
A(left)
11 − iGR

11Γ
(left)
11 GA

11Σ
A(left)
11 =

GR
11Σ

R(left)
11 −GA

11Σ
A(left)
11 +iGR

1MΓ
(right)
MM GA

M1Σ
A(left)
11

= GR
11Σ

R(left)
11 −GA

11Σ
A(left)
11 +iGR

11Γ
(right)
11 GA

11Σ
A(left)
11 .

We also notice that

�
[
GA

11Σ
A(left)
11

]

nn
= �

[
(GA

11Σ
A(left)
11 )†

]

nn

= �
[
Σ

R(left)
11 GR

11

]

nn
.
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By using the above relations, equation (12) can be recast
in the form

i
(a)
0n,1n(E) = i0 2�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
GR

11Σ
R(left)
11 − Σ

R(left)
11 GR

11

]

nn

E < µL < µR

[
−iGR

11Γ
(right)
11 GA

11Σ
A(left)
11

]

nn

µL < E < µR

0 µL < µR < E.

(14)

Similarly equation (13), valid in the case µR < µL, takes
the form

i
(b)
0n,1n(E)= i0 2�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
GR

11Σ
R(left)
11 − Σ

R(left)
11 GR

11

]

nn

E < µR < µL

[
GR

11Σ
R(left)
11 − Σ

R(left)
11 GR

11

+iGR
11Γ

(right)
11 GA

11Σ
A(left)
11

]

nn

µR < E < µL

0 µR < µL < E.
(15)

Equations (14) and (15) constitute the basic result for the
theoretical imaging of longitudinal currents in the sample.
These expressions are the most convenient both for ana-
lytic considerations and numerical simulations. We discuss
now the transverse currents with similar procedures.

3.2 Expression of the transverse currents

The transverse current along a bond from site 1n to site
1 n+1 in steady state conditions is given by the expression

I1n,1 n+1 =
2(−e)

�

∫
dE

2π
2� [

t1n,1 n+1G
<
1 n+1,1n

]

= −i0

∫
dE 2� [

t1n,1 n+1G
<
1 n+1,1n

]
. (16)

In the above equation, the lesser Green’s function in-
volves automatically matrix elements only among orbitals
of Col. 1 of the central device, and there is no need of
the preliminary elaborations performed in the previous
subsection for the longitudinal current. In fact to proceed
further we simply use the lesser Green’s function projected
on the sites of Col. 1, given by equation (9). The trans-

verse branch current of equation (16) becomes

I1n,1 n+1 = −i0

∫
dE 2�

{
t1n,1 n+1

[
ifLGR

11Γ
(left)
11 GA

11

+ifRGR
1MΓ

(right)
MM GA

M1

]

n+1,n

}

= −i0

∫
dE 2�

{
t1n,1 n+1

[
ifLGR

11Γ
(left)
11 GA

11

+ifRGR
11Γ

(right)
11 GA

11

]

n+1,n

}
. (17)

As before, we consider preliminarily the situation for zero
temperature (and postpone the treatment of finite tem-
peratures to Sect. 6). At the absolute zero temperature,
the two Fermi distribution functions become step func-
tions fL(E) = Θ(µL −E) and fR(E) = Θ(µR −E). Thus
in the case µL < µR the expression (17) takes the follow-
ing form

I1n,1 n+1 =
∫

i
(a)
1n,1 n+1(E) dE (18a)

where

i
(a)
1n,1 n+1(E) = i0 2�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1n,1 n+1

[
−iGR

11Γ
(left)
11 GA

11

−iGR
11Γ

(right)
11 GA

11

]

n+1,n

E < µL < µR

t1n,1 n+1

[
−iGR

11Γ
(right)
11 GA

11

]

n+1,n

µL < E < µR

0 µL < µR < E.
(18b)

In the opposite situation µR < µL (case b), expression
(17) takes the form

I1n,1 n+1 =
∫

i
(b)
1n,1 n+1(E) dE (19a)

where

i
(b)
1n,1 n+1(E) = i0 2�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1n,1 n+1

[
−iGR

11Γ
(left)
11 GA

11

−iGR
11Γ

(right)
11 GA

11

]

n+1,n

E < µR < µL

t1n,1 n+1

[
−iGR

11Γ
(left)
11 GA

11

]

n+1,n

µR < E < µL

0 µR < µL < E.
(19b)
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We can simplify somewhat the expression at the top of
equations (18b) and (19b) using once more the identities
described in equations (4). In particular we have

[
−iGR

11Γ
(left)
11 GA

11 − iGR
11Γ

(right)
11 GA

11

]

n+1,n
=

[
GR

11 − GA
11

]
n+1,n

=
[
GR

1 n+1,1n − GA
1 n+1,1n

]
.

Equations (14, 15, 18) and (19) are the basic expressions
for the theoretical imaging of current profiles in the lon-
gitudinal direction and in the transverse direction respec-
tively. The results are reported for convenience in Table 1,
which summarizes the current expressions, at zero temper-
ature, for the theoretical imaging of current profiles in two-
dimensional electron systems. The corresponding expres-
sions at finite temperatures will be reported in Table 3.

4 Theoretical imaging of current profiles
in time-reversal symmetric systems

The expressions deduced in Section 3, and summarized in
Table 1, are the central result of this work for the calcula-
tion of the local currents through any branch. They hold
for any electronic system, described by a Hamiltonian of
type (1), regardless of the presence or not of time-reversal
symmetry. However, much can be learned on the structure
and physical meaning of the expressions elaborated so far
considering the cases in which the electron Hamiltonian is
invariant by time-reversal symmetry.

The first basic consideration is that, in the presence of
time-reversal symmetry, it holds

I
(a1)
0n,1n = I

(b1)
0n,1n = I

(a1)
1n,1 n+1 = I

(b1)
1n,1 n+1 ≡ 0; (20)

any of the above four terms can be different from zero only
in the absence of time-reversal symmetry.

Systems of spinless electrons are said to belong to the
orthogonal or the unitary class of symmetry, if they are
in the presence or in the absence of time-reversal symme-
try, respectively. It is easy to show that the contributing
terms (20) to the branch current vanish identically in the
orthogonal class case. In fact when a system is invariant
by time-reversal symmetry, we can assume that the ba-
sis functions are real and that the matrix elements of the
Hamiltonian are real and symmetric; this entails that also
the advanced and retarded Green’s functions are symmet-
ric (although not real, in general). In other words, the
propagator from a given site i to any other site j and the
propagator from site j to site i are equal: GR

ji ≡ GR
ij . This

equality does not hold any more in the presence of mag-
netic fields. The trivial reason for this is the Lorentz force,
automatically embodied in the Hamiltonian describing a
system in the presence of magnetic fields.

We have thus in the presence of time-reversal symme-
try the properties

tij = t∗ij , GA
ij = GA

ji, GR
ij = GR

ji.

Table 1. Expressions, at zero temperature, for the theoreti-
cal imaging of the branch current profiles in two-dimensional
systems. These expressions are valid both in the presence and
in the absence of time-reversal symmetry. As discussed in the
text, the terms with superscripts (a1) and (b1) describe per-
sistent contributions to the currents, those with superscripts
(a2) and (b2) describe transport contributions.

Longitudinal current for µL < µR

I0n,1n = I
(a1)
0n,1n + I

(a2)
0n,1n

I
(a1)
0n,1n = i0

∫ µL

−∞
dE 2�

[
GR

11Σ
R(left)
11 − Σ

R(left)
11 GR

11

]

nn

I
(a2)
0n,1n = i0

∫ µR

µL

dE 2�
[
−iGR

11Γ
(right)
11 GR

11Σ
A(left)
11

]

nn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Longitudinal current for µR < µL

I0n,1n = I
(b1)
0n,1n + I

(b2)
0n,1n

I
(b1)
0n,1n = i0

∫ µR

−∞
dE 2�

[
GR

11Σ
R(left)
11 − Σ

R(left)
11 GR

11

]

nn

I
(b2)
0n,1n = i0

∫ µL

µR

dE 2�
[
GR

11Σ
R(left)
11 − Σ

R(left)
11 GR

11

+ iGR
11Γ

(right)
11 GR

11Σ
(left)
11

]

nn

Transverse current for µL < µR

I1n,1 n+1 = I
(a1)
1n,1 n+1 + I

(a2)
1n,1 n+1

I
(a1)
1n,1 n+1 = i0

∫ µL

−∞
dE 2�

{
t1n,1 n+1

[
GR

1 n+1,1n − GA
1 n+1,1n

]}

I
(a2)
1n,1 n+1 = i0

∫ µR

µL

dE 2�
{

t1n,1 n+1

[
−iGR

11Γ
(right)
11 GA

11

]

n+1,n

}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transverse current for µR < µL

I1n,1 n+1 = I
(b1)
1n,1 n+1 + I

(b2)
1n,1 n+1

I
(b1)
1n,1 n+1 = i0

∫ µR

−∞
dE 2�

{
t1n,1 n+1

[
GR

1 n+1,1n − GA
1 n+1,1n

]}

I
(b2)
1n,1 n+1 = i0

∫ µL

µR

dE 2�
{

t1n,1 n+1

[
−iGR

11Γ
(left)
11 GA

11

]

n+1,n

}

It follows

�[tij(GR
ji−GA

ji)] = tij�[GR
ji −GR∗

ij ] = tij�[GR
ji −GR∗

ji ] ≡ 0.

If the suffix i stands for 1n, and the suffix j stands for
1 n + 1, it is seen that in the presence of time-reversal
symmetry

� t1n,1n+1

[
GR

1n+1,1n − GA
1n+1,1n

] ≡ 0; (21a)

thus the last two of the relations (20) are demonstrated.
A similar demonstration shows that also the first two

terms of equation (20) are identically zero. In fact, in the
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Table 2. Expressions, at zero temperature, for the theoretical
imaging of branch current profiles in two-dimensional electron
systems with time-reversal symmetry. As discussed in the text,
in the presence of time-reversal symmetry persistent currents
vanish identically; the transport currents are described by the
terms with superscripts (a2) and (b2), not vanishing in general.

Longitudinal current for µL < µR

I0n,1n ≡ I
(a2)
0n,1n

= i0

∫ µR

µL

dE 2�
[
−iGR

11Γ
(right)
11 GR

11Σ
A(left)
11

]

nn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Longitudinal current for µR < µL

I0n,1n ≡ I
(b2)
0n,1n

= i0

∫ µL

µR

dE 2�
[
+iGR

11Γ
(right)
11 GR

11Σ
(left)
11

]

nn

Transverse current for µL < µR

I1n,1 n+1 ≡ I
(a2)
1n,1 n+1

= i0

∫ µR

µL

dE 2�
{

t1n,1 n+1

[
−iGR

11Γ
(right)
11 GA

11

]

n+1,n

}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transverse current for µR < µL

I1n,1 n+1 ≡ I
(b2)
1n,1 n+1

= i0

∫ µL

µR

dE 2�
{

t1n,1 n+1

[
−iGR

11Γ
(left)
11 GA

11

]

n+1,n

}

presence of time-reversal symmetry, Green’s functions and
self-energies are symmetric operators; thus it holds

[
GR

11Σ
R(left)
11 − Σ

R(left)
11 GR

11

]

nn
=

∑
n′

[
GR

1n,1n′Σ
R(left)
1n′,1n − Σ

R(left)
1n,1n′ GR

1n′,1n

]

=
∑

n′

[
GR

1n,1n′Σ
R(left)
1n′,1n − Σ

R(left)
1n′,1n GR

1n,1n′

]
≡ 0. (21b)

An alternative and perfectly equivalent demonstration
could be done also starting from the identity

�
[
GR

11Σ
R(left)
11 −Σ

R(left)
11 GR

11

]

nn
≡�t0n,1n[GR

1n,0n−GA
1n,0n]

and observing the vanishing of the second member of the
above expression in the presence of time-reversal symme-
try. This completes the demonstration of equation (20);
the results are summarized in Table 2. From Table 2 it
is seen by inspection that the interchange of the left and

the right chemical potentials (for unchanged Hamiltonian)
simply changes the sign of the currents.

The above considerations hold only for systems invari-
ant by time-reversal symmetry. In broken time-reversal
symmetry, and in the presence of sufficiently strong mag-
netic fields, the complete spatial separation of the left-
propagating and right-propagating carriers may occur
(“chiral regime”) with peculiar properties on magneto-
transport phenomena. As evident from Table 1, the in-
terchange of the left and right chemical potentials can
modify dramatically the distribution of microscopic cur-
rents flowing in the system.

5 Physics behind formulas: quantitative
discerning of transport and persistent
currents

In this section, we discuss the general results, elaborated
in Section 3 and summarized in Table 1, in order to put
in evidence the physical meaning behind formal expres-
sions. Actually, a central achievement of our procedure is
the clear quantitative description of transport and per-
sistent currents in unitary class systems, as analytically
highlighted in Section 5.1 and numerically illustrated in
Section 5.2.

5.1 Transport and persistent currents
within the Keldysh nonequilibrium formalism

For sake of simplicity let us consider the longitudinal cur-
rent for instance in the case µL < µR given in Table 1;
the discussion for the transverse current, as well as for the
case µR < µL, can be done along similar lines. The micro-
scopic longitudinal currents for µL < µR are given by the
expression of Table 1

I0n,1n = I
(a1)
0n,1n + I

(a2)
0n,1n

= i0

∫ µL

−∞
dE 2�

[
GR

11Σ
R(left)
11 − Σ

R(left)
11 GR

11

]

nn

+i0

∫ µR

µL

dE 2�
[
−iGR

11Γ
(right)
11 GA

11Σ
A(left)
11

]

nn
.

(22)

Equation (22) holds for systems with or without time-
reversal symmetry. The following considerations can be
drawn from its analytic structure:

(i) as we have already noticed, when time-reversal sym-
metry is present, the Green’s function and the self-
energy operators are symmetric; thus according to
equation (21b) it holds

[
GR

11(E)ΣR(left)
11 (E) − Σ

R(left)
11 (E)GR

11(E)
]

nn
≡ 0

for any chosen energy E. This shows that the first
term in the right hand side of equation (22) can
be different from zero only in the absence of time-
reversal symmetry;
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(ii) the total current is obtained summing the contribu-
tions from all the chains crossing any arbitrary sec-
tion of the device. This is done performing trace op-
eration on the index n of the expression (22). Trace
operation of a product of operators is invariant under
cyclic permutation of operators, and then

Tr
[
GR

11(E)ΣR(left)
11 (E) − Σ

R(left)
11 (E)GR

11(E)
]
≡ 0

i.e. in any energy interval the contribution to the
total current originated from the first term in the
right hand side of equation (22) is exactly zero.
This holds independently from the presence of time-
reversal symmetry in the system Hamiltonian. We
have thus that the lead-to-lead total current (or ap-
plied current or measured current) flowing in the de-
vice is given by the relation

I = i0

∫ µR

µL

dE Tr
[
GR

11(E)Γ (right)
11 (E)GA

11(E)Γ (left)
11

]
,

(23)
which recovers the Landauer-Büttiker two terminal
scattering relation for charge transport [9], and re-
mains valid also in cases where the leads are not in-
variant by space translations;

(iii) from expressions (22) and (23) it is evident that
within the Keldysh tight-binding nonequilibrium for-
malism, imaging of currents as obtained from the
branch current expression (22) requires an amount
of work and computer memory comparable to what
required for the more traditional calculation of the
total currents by means of equation (23).

Consistently with the above remarks, we address for
brevity the first term and the second term in equation (22)
as persistent current component and transport cur-
rent component, respectively; from now on we rewrite
equation (22) (for the case µL < µR) in the self-
explanatory form

I0n,1n = I
(persist)
0n,1n + I

(transp)
0n,1n (24a)

with

I
(persist)
0n,1n ≡I

(a1)
0n,1n = i0

∫ µL

−∞
dE 2�

[
GR

11Σ
R(left)
11 −GR

11Σ
R(left)
11

]

nn

(24b)
and

I
(transp)
0n,1n ≡ I

(a2)
0n,1n

= i0

∫ µR

µL

dE 2�
[
−iGR

11Γ
(right)
11 GA

11Σ
A(left)
11

]

nn
.

(24c)

Quite similarly, all the terms with superscripts (a1, b1) and
(a2, b2) appearing in Tables 1 and 2 can be interpreted as
persistent and transport contributions to the currents, re-
spectively. Regardless which is higher between the left and
right chemical potentials µL and µR, from equations (24)

and the similar ones in the tables, it is seen that “per-
sistent currents” are supported by electronic states whose
energies are lower than both chemical potentials, while
“transport currents” are supported by electronic states
whose energies are intermediate between the two chem-
ical potentials. The analytic expressions in Table 1 also
show that persistent currents (differently from transport
currents) are unaffected by bias reversal of the device, ob-
tained interchanging µL and µR; furthermore, by virtue
of the general equations (21) persistent currents vanish
identically in the presence of time-reversal symmetry. The
exact quantitative expressions of persistent and transport
components achieved in Section 3 has been made possi-
ble by the Keldysh theory of transport, which includes
both currents carried from lead-to-lead scattering states,
and diamagnetic currents non necessarily connected to
the leads. The flow and role of persistent currents in
unitary class systems can be inferred, for instance, from
magnetization measurements [45] in two-dimensional elec-
tron gases subject to strong magnetic fields, or also from
the predicted interference and magnetization phenomena
in multichannel mesoscopic rings, threaded by steady or
time-dependent magnetic fields [34,46].

5.2 Numerical simulations

In order to better clarify the matter discussed in the pre-
vious Sections, we evaluate numerically the expressions of
Table 1 and provide the current flow in typical quantum
wires in the presence and in the absence of magnetic fields
perpendicular to the device. For the tight-binding repre-
sentation of the two-dimensional electron gas [39–44], we
adopt a square lattice discretization, with edge a, near-
est neighbor interaction t, effective mass of the carriers
m∗. Typical values adopted in the present simulation are
m∗ = 0.068 me (as in GaAs-AlGaAs heterostructures),
t = −90 meV and then the lattice parameter a = 2.5 nm.
The considered wire is arbitrarily long in the longitudi-
nal direction; its transversal width W = 300 nm, corre-
sponding to a total number of 121 chains, is chosen suffi-
ciently larger than the magnetic length �B = (�c/eB)1/2

(for fields of intensity B = 5 T, we have �B ≈ 12 nm,
�ωc ≈ 8.5 meV). The translational symmetry in the lon-
gitudinal direction is artificially broken by a semicircular
impenetrable island (of radius 75 nm). Impenetrable re-
gions of the wire are safely mimicked by including in the
Hamiltonian site energies Emn = E0 higher than the band
width 4|t|. In the numerical simulation below, the chemical
potentials of the left and right reservoirs are µL = 14 meV
and µR = 15 meV, or vice versa, both in the presence and
in the absence of a perpendicular magnetic field of 5 T
(along the positive z axis).

The (nearest-neighbor) tight-binding Hamiltonian,
adopted to describe the device and the leads, is most suit-
able for the evaluation of self-energies and Green’s func-
tions by means of an appropriate mix of the powerful
renormalization and decimation procedures [38–44]. The
periodic parts of the open leads are formally eliminated
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Fig. 2. (a) Differential conductance of the quantum wire described in the text, with an impenetrable island on the lower
edge and in the absence of magnetic field. The dashed lines indicate the left and right chemical potentials µL = 14 meV and
µR = 15 meV. (b) Spatial distribution of the transport current. The current flows all over the device and skips the impenetrable
region. (c) Current profile in an enlarged region of the wire in the case µL = 14 meV and µR = 15 meV; the arrows indicate the
intensity and the direction of the current. (d) Current profile in an enlarged region of the wire in the case µR = 14 meV and
µL = 15 meV; the arrows indicate the intensity and the direction of the current. (c) and (d) coincide except for the directions
of the arrows. The unit of current on the gray scale is I0.

and replaced by the equivalent self-energies operators act-
ing on the central device. The self-energies produced by
the open leads are obtained with the renormalization tech-
nique, pursued until reaching the fixed-point [36] of the
iterative procedure (a small number Niter of steps cor-
responds to the processing of a total of 2Niter columns;
twenty steps or so were definitely more than sufficient to
give spectral currents with the accuracy of one part over
million even in the presence of magnetic fields). Only in
the central part of the devices, where translational symme-
try is broken (by the superimposed impenetrable island,
or any other irregularities) the reduction of the degrees
of freedom is achieved eliminating a single column at a
time. Green’s functions and coupling operators are then
obtained by handling the renormalized Hamiltonian (of
rank N) on the preserved column; after storing whatever
useful, this procedure is performed on every adjacent col-
umn in the region of interest of the device.

In Figure 2a, the differential conductance of the device
in the absence of magnetic fields is reported. We notice the
typical step-like shape, the precision of the step is partially
affected by the presence of the obstacle. The dashed lines
indicate the two chemical potentials µL and µR. Since
time-reversal symmetry holds, the persistent current is
zero, and transport and total microscopic currents coin-
cide. The current distribution reported in Figure 2b is
given by the integration of the transport spectral current

between the two chemical potentials (see Tab. 2). The
electron flow occurs throughout the bulk of the sample;
interference fringes due to the obstacle and to the edges
can be observed, and are signature of a coherent transport.
Reversal of the potential bias simply entails the reversal
of the current direction, without changing its microscopic
distribution, as discussed in Section 4. This is illustrated
by Figures 2c and 2d.

In Figure 3a, the differential conductance of the device
in the presence of a perpendicular magnetic field of 5 T is
reported. The differential conductance shows the typical
plateaus of the integer quantum Hall effect. Each time a
new Landau band is activated, the conductance increases
by a quantum 2e2/h, as evident in Figure 3a. In the pres-
ence of magnetic fields, the persistent current is different
from zero, since time-reversal symmetry is broken; fur-
thermore, the distribution of transport current is deeply
influenced by the sign of the potential bias. In Figures 3b
and 3c the microscopic distribution of the persistent and
transport currents are reported in the case µL = 14 meV
and µR = 15 meV. Figure 3b shows that the persistent
current flows in two spatially separated conductive chan-
nels bearing electrons in opposite directions at the oppo-
site edges of the sample. Figure 3c shows that the trans-
port current flows in the lower edge only and skips the
obstacle without backscattering.
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Fig. 3. (a) Differential conductance of the same sample of Figure 2, in the presence of a perpendicular magnetic field of 5 T.
The dashed lines indicate the chosen left and right chemical potentials. (b) Spatial distribution of the persistent current in the
case µL = 14 meV and µR = 15 meV. The arrows denote the current direction, and the unit on the gray scale is I0. (c) Spatial
distribution of the transport current in the case µL = 14 meV and µR = 15 meV. (d) Spatial distribution of the persistent
current in the case µR = 14 meV and µL = 15 meV. This map and the map of case (b) are exactly the same. (e) Spatial
distribution of the transport current in the case µR = 14 meV and µL = 15 meV. In this map, the current flows in the opposite
direction and opposite edge of case (c).

This important peculiarity is due to the spatial chi-
rality, i.e. the spatial separation between left moving and
right moving carriers in strong magnetic fields, produced
by the Lorentz force, automatically embodied in the for-
malism and the expressions of Table 1.

In the specific situation of Figures 3b–3c, it can be no-
ticed that the transport current is much smaller than the
persistent current, since the former is obtained by inte-
grating the spectral contribution in the energy range be-
tween the two chemical potentials, while the latter is given
by integrating the spectral contribution in the whole en-
ergy range below µL (see Tab. 1). As a consequence, per-
sistent current can be locally much larger than transport
currents; although these background currents may play a

leading role in local magnetization and quantum interfer-
ence phenomena [45,46], their net flow through any section
of the sample is exactly zero. Vice versa, the calculated to-
tal transport current of Figure 3c is exactly quantized to
2I0, with a numerical accuracy better than one part per
million (or even more if one wishes). Such a satisfactory
numerical accuracy in the description of current profiles,
even when dealing with arbitrary long wires in the pres-
ence of magnetic fields, is essentially linked the the ex-
traordinary efficiency of the renormalization procedure in
reaching the fixed-point renormalized Hamiltonian for the
semi-infinite parts of the device [38].

The case µR = 14 meV and µL = 15 meV is consid-
ered in Figures 3d and 3e. In this situation the persistent
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currents remain exactly the same as in Figure 3b, while
the transport currents flow in the opposite direction on
the opposite edge, again quantized to 2I0.

The analytic considerations of Section 5.1, together
with the numerical calculation of this Section 5.2 (al-
though restricted to the minimal models of Figs. 2, 3),
give a feeling of the wealth of information and (accurate)
technical simplicity of the theoretical imaging of currents,
contained in the expressions of Table 1.

6 Current profiles at finite temperatures

The study of current profiles at finite temperatures can
be obtained following step-by-step the same procedure
adopted till now, and trivial replacement of zero temper-
ature distribution functions of the leads with finite tem-
perature distribution functions of the leads. The starting
point for the deduction of e.g. the local longitudinal cur-
rents at T �= 0 are again equations (10a, 10b) of Section 3.

In Section 3, we have seen that at zero temperature
the spectral current entering equation (10a) is given by
equation (11). At arbitrary finite temperatures T �= 0, the
spectral current entering equation (10a) is

i0n,1n = i0fL2�
[
GR

11Σ
R(left)
11 − GR

11Σ
A(left)
11

−iGR
11Γ

(left)
11 GA

11Σ
A(left)
11

]

nn

+ i0fR2�
[
−iGR

1MΓ
(right)
MM GA

M1Σ
A(left)
11

]

nn
, (25)

where fL,R = [exp (E − µL,R)/kBT + 1]−1. Starting from
equation (25) and following step-by-step the procedure
outlined in Section 3, we can easily work out all the expres-
sions of current profiles at finite temperature. To give an
example, the finite temperature version of equation (14)
is just

i
(a)
0n,1n(E) = i02�

[
GR

11Σ
R(left)
11 − Σ

R(left)
11 GR

11

]

nn
fL(E)

+ i02�
[
−iGR

11Γ
(right)
11 GA

11Σ
A(left)
11

]

nn
[fR(E) − fL(E)].

There is no need to repeat here for T �= 0 the straight-
forward procedure of Section 3. The results for T �= 0 are
reported in Table 3 which summarizes the contents of this
work, also for what concerns the quantitative discerning
of transport and persistent currents. Before closing, it is
worthwhile to add that, in the presence of time-reversal
symmetry, the analytic expressions of the current profiles
at finite temperature (Tab. 3) exhibit universal features in
line with those previously discussed at zero temperature
(Tab. 1); this occurs by virtue of the general arguments
discussed in Section 4. For the orthogonal class systems,
in fact, equations (21) and Table 3 show that the per-
sistent currents vanish identically, while the microscopic
transport currents reverse their direction under bias re-
versal, without changing spatial distribution. These two
properties of current distributions are no more true in bro-
ken time-reversal symmetry, where persistent currents are

Table 3. Expressions, at arbitrary temperature, for the theo-
retical imaging of current profiles in systems with or without
time-reversal symmetry.

Longitudinal current for µL < µR

I0n,1n = I
(persist)
0n,1n + I

(transp)
0n,1n

I
(persist)
0n,1n = i0

∫
dEfL 2�

[
GR

11Σ
R(left)
11 − Σ

R(left)
11 GR

11

]

nn

I
(transp)
0n,1n = i0

∫
dE(fR−fL) 2�

[
−iGR

11Γ
(right)
11 GR

11Σ
A(left)
11

]

nn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Longitudinal current for µR < µL

I0n,1n = I
(persist)
0n,1n + I

(transp)
0n,1n

I
(persist)
0n,1n = i0

∫
dEfR 2�

[
GR

11Σ
R(left)
11 − Σ

R(left)
11 GR

11

]

nn

I
(transp)
0n,1n = i0

∫
dE(fL−fR)2�
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11 −Σ

R(left)
11 GR

11
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11Γ

(right)
11 GR

11Σ
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]

nn

Transverse current for µL < µR

I1n,1 n+1 = I
(persist)
1n,1 n+1 + I

(transp)
1n,1 n+1

I
(persist)
1n,1 n+1 = i0

∫
dEfL 2�

{
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(transp)
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}
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Transverse current for µR < µL

I1n,1 n+1 = I
(persist)
1n,1 n+1 + I

(transp)
1n,1 n+1

I
(persist)
1n,1 n+1 = i0

∫
dEfR 2�

{
t1n,1 n+1

[
GR

1 n+1,1n − GA
1 n+1,1n

]}

I
(transp)
1n,1 n+1 = i0

∫
dE(fL − fR)

2�
{
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[
−iGR

11Γ
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11 GA

11

]

n+1,n

}

present and are unaffected by bias reversal, and transport
currents change in general both direction and spatial dis-
tribution under bias reversal.

7 Conclusions

In this paper we have focused on the theoretical imag-
ing of microscopic currents in two-dimensional devices,
both in the presence and in the absence of time-reversal
symmetry. Our procedure not only pictures the spatial
and energy distribution of carriers and currents, but also
provides closed expressions for the persistent and lead-
to-lead electron flow in mesoscopic devices. The concepts
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and expressions, here provided in a systematic way, are of
value to substantiate maps of edge and bulk conductive
channels, persistent and transport charge currents in two-
dimensional systems, also in the presence of impurities,
disorder effects and boundaries, as shown by the simula-
tions performed within the same background on quantum
point contacts and random quantum wires [39,40]. Our
formalism fully accounts also for the presence of magnetic
fields, and embodies quantization and chirality conditions
often encountered in magneto-transport experiments. An-
other nice feature of the present approach is that the in-
gredients necessary for computation of current profiles are
restricted to propagators involving only the orbitals of sin-
gle columns scanned through the device.

The basic tools exploited in the present proce-
dure are the tight-binding representation of electronic
states [7,8,36,38] and the Keldysh nonequilibrium Green’s
function theory [17,18,22–28]. The flexibility of the former
and the generality of the latter, should make similar proce-
dures of value also in dealing more sophisticated models of
simulations, including for instance multi-orbital per site,
spin-orbit coupling or other spin-dependent terms, succes-
sive neighbor interactions, models of many-body effects,
different lattice topologies.

This work has been supported by Scuola Normale Superiore,
and by National Enterprise for Nanoscience and Nanotechnol-
ogy (NEST).
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